
Scale with Redis
Cluster - Caching

ArunSanthoshKumar Annamalai

Author/Architect
White Paper

Executive Summary

Industry Trends

Key Statistics Regarding Interest

in Redis Clusters

Understanding the Redis Cluster

What is Redis Cluster

Benefits of Redis Cluster

 Horizontal Scaling

 High Availability

 Automatic Failover nodes

 Data Sharding

Setting Up Redis Cluster

 Pre-Requisites

 Installation

 Configure nodes

 Start the Instances

 Create Cluster

 Verify Cluster

Scaling the Redis Cluster

 Adding the Nodes

 Removing the Nodes

01

02

03

04

09

11

13

14

17

17

18

18

18

Access the Redis Cluster

 Create the Cluster Client

 Set the keys

 Access the keys

Best Practices

 Data Sharding

 Monitoring

 Backup

 Security

Limitation

Use Cases

 Ecommerce application

Key take-aways

Conclusion

References

Index

Executive
Summary
Redis is an open-source, in-memory data
structure store that can be used for caching,
databases, and message brokering. As an
in-memory store, it delivers significantly higher
performance compared to traditional
databases. Redis supports a wide range of use
cases, including message brokering, key-value
storage, caching, databases, Pub/Sub
messaging, clustering, and ensuring high
availability of data.

In this case study, we will focus on caching, one
of the most common use cases of Redis. Redis
o�ers high availability through replication, and
its performance can be further enhanced by
leveraging its clustering features.

Introduction
Redis Clustering
Redis clustering enables scaling by distributing data across multiple Redis
instances, allowing the system to handle larger datasets while increasing read and
write throughput. Built-in fault tolerance is achieved by replicating data to
secondary nodes, and data is partitioned based on hash slots.

Redis scales e�ectively through clustering, with the application managing
redistribution in the event of node failures or additions. Redis also includes
Sentinel, a built-in service that handles clustering management. Additionally, Redis
clusters can be monitored using Redis Sentinel or various third-party tools.

01

Redis is widely regarded as one of the most popular key-value stores in the
IT industry, known for its robustness, scalability, and high availability. As the
world becomes more competitive with advances in internet speed and
technological upgrades, Redis supports high-speed client communication
through its in-memory architecture.

Redis clustering has become a critical component of modern infrastructure,
especially for real-time data processing in industries such as e-commerce,
gaming, analytics, and finance. Organizations are increasingly adopting
Redis clusters due to their scalability, performance, and resilience. Industry
trends indicate a growing interest in Redis, as reflected in the increasing
number of Docker image downloads and widespread adoption of Redis
software.

Industry Trends

02

Key Statistics
Regarding
Interest in
Redis Clusters

03

The Bitnami/Redis-cluster images have been downloaded over 100 million
times, reflecting the strong interest and widespread usability of Redis
clusters in the software industry.

A significant number of downloads have been recorded for Redis-related
APIs and programming package managers.

Redis is among the most downloaded images on Docker Hub.

Understanding the
Redis Cluster

What is Redis Cluster
Redis Cluster is a distributed implementation of Redis that splits data storage
across multiple Redis nodes, enabling horizontal scaling and ensuring high
availability through automatic failover.

Benefits of Redis Cluster
Redis Cluster provides substantial benefits, including horizontal scaling, high
availability, automatic failover, and data sharding. By distributing data and
workloads across multiple nodes, it ensures continuous service through replicas
and optimizes resource utilization through sharding. Redis Cluster delivers a
best-in-class solution for modern, data-intensive applications.

These features make Redis Cluster an excellent choice for applications requiring
high performance, scalability, and resilience, particularly when handling large
datasets with multiple write points.

Hash Slots: 16384
04

Horizontal Scaling
Horizontal scaling architecture enables systems to expand by adding more
nodes as needed to accommodate increased workloads and data volumes.
By distributing data across multiple nodes, read and write operations are
spread out, reducing the load on any single node and improving overall
performance—especially in high-tra�c enterprise systems, such as
e-commerce or financial platforms that require real-time data access.

Nodes and data storage can be added without significant changes to the
application architecture, allowing the system to easily scale up or down
based on demand. This makes horizontal scaling both cost-e�ective and
e�cient for managing fluctuating workloads.

05

Redis is built with replication capabilities, allowing additional instances to be
added to ensure failover. Redis Cluster guarantees high availability by
maintaining multiple replica nodes for each master node. These replicas
serve as backups and can quickly take over if a master node fails. Redis
provides synchronization mechanisms to keep replicas up to date, using
either full or partial sync depending on data integrity needs.

In the event of a master node failure, replicas are promoted to master,
ensuring uninterrupted service with minimal downtime.

Replicas consistently synchronize with the master node, protecting against
data loss and maintaining data consistency. This architecture also handles
node failures and network partitions, o�ering robust fault tolerance.

High Availability

06

Automatic
Failover nodes

Redis Cluster includes an automatic
failover mechanism that promotes a
replica (slave) to master if the current
master node fails. This process occurs
automatically, without requiring
human intervention, ensuring minimal
downtime and maintaining service
responsiveness even during node
failures.

By eliminating the risk of human error
in failover situations, Redis Cluster
significantly improves operational
e�ciency. Automatic failover
enhances the reliability of applications
by ensuring continuous data access
and smooth operation during failures.

07

Data Sharding
Sharding involves distributing data across multiple nodes
using consistent hashing, which partitions the data into
smaller, more manageable chunks spread across the
cluster. Redis Cluster employs hash slot-based partitioning,
automatically handling sharding or resharding when nodes
are added or removed.

By distributing data evenly across multiple nodes, Redis
Cluster ensures no single node becomes overloaded,
optimizing resource utilization.

Data sharding enables parallel processing of operations
within the same application across di�erent nodes,
improving overall throughput and reducing latency. As
data grows, the cluster can be expanded by adding more
nodes, with each node managing a portion of the data,
allowing the system to handle larger datasets e�ortlessly.

08

Setting Up Redis Cluster

09

Install the same version of Redis sever into the nodes. This can be done by
installing using binary download from the Redis releases.

This can be done in various ways. Manual install, Docker install, or the helm install.

Installation

 Multiple instances or multiple nodes or multiple virtual machines.
 Redis should be installed in all machines which will be part of cluster.
 Network configuration to have the communication between nodes.

Pre-Requisites

By default, Redis configuration for single instance application. To make it Redis
cluster we need to modify to enable Redis cluster.

Minimally we need to make these config changes on the custom redis.conf file.

port 6379

cluster-enabled yes

cluster-config-file redis.conf

cluster-node-timeout 5000

appendonly yes

Configure nodes

Stat the Redis instance with parameterised the conf file updated with Redis
cluster configuration.

Use the redis.conf file to start the redis instance in each node of the cluster.
redis-server /path/to/redis.conf

Start the Instances

Create Cluster
Once you have all the nodes up and running, (with Redis server) create
cluster in master server.

Create helm install the repo

Using the helm install the Redis-cluster.

10

Verify the cluster using the cluster commands.

redis-cli -c cluster nodes

Verify Cluster

Here is the cluster with 6 replicas and each of the 3 masters to have
one slave.

Scaling the Redis Cluster

11

Adding the Nodes

Replicas can be scaled out based
on requirement. Or HPA can be
created to scale up or scale down.

After adding additional nodes up and running. Introduce the additional
nodes using the cluster meet commands.

To remove the nodes, reshard and reduce the stateful set replica count.

Removing the Nodes

12

Here is the command client implementation of accessing the Redis cluster
through CLI interface.

Access the Redis Cluster

Create the Cluster Client.

After reducing the nodes, go back to original configurations

We can create redis-cluster client to access the cluster in cmd line. Even we can
expose the deployment so it can be accessed through external Api clients.

kubectl run --namespace redis redis-cluster-client --rm --tty -i --restart='Never' \
--env REDIS_PASSWORD=$REDIS_PASSWORD \
--image docker.io/bitnami/redis-cluster:7.2.4-debian-12-r12 – bash

13

Best Practices
Redis is a high-performance application with sub-millisecond response times. Due
to its performance capabilities, careful consideration is required when configuring
it for production. It's essential to implement consistent algorithms for data
sharding, maintain real-time observability to monitor patterns, establish a proper
backup strategy to ensure data integrity, and secure access to the application.

Set the keys
Based on the keys hash value, keys are redirected to
relevant slots.

Access the keys
Keys are retrieved from the relevant slots.

Keys are retrieved from the relevant slots.

14

Data Sharding
 Design Redis keys to distribute data evenly across all shards.
 Use consistent hashing to minimize data movement when adding or removing
 nodes.
 Utilize hash tags (delimited by “{}”) in keys so that related keys are stored on
 the same shard.

Monitoring
Monitoring is critical for maintaining the health and performance of a Redis Cluster.
With proper monitoring, issues can be detected early on.

 Use Redis Sentinel, a high-availability component, to automate monitoring and
 manage the failover process.

 Configure exporters and integrate Redis with external monitoring systems like
 Prometheus, Grafana, or Datadog to track key metrics such as CPU usage,
 memory consumption, cache hit/miss ratios, and latency.

 Implement alerting for critical events such as node failures, high memory usage,
 and increased latency to proactively address potential issues

15

Backup
Redis is an in-memory data store, where application data is stored in RAM.
However, Redis provides file-based backup options.

 Leverage Redis snapshots to create point-in-time copies of the dataset. You
 canadjust the configuration to trigger backups based on time intervals or the
 number of writes.

 Utilize the Append Only File (AOF) to log every write operation, ensuring
 durability and o�ering a complete recovery mechanism.

 Define Recovery Time Objectives (RTO) and Recovery Point Objectives (RPO),
 and regularly test your backup and recovery processes.

Security
Protecting Redis instances from unauthorized access, data breaches, and security
threats is crucial.

 Apply firewall restrictions at the port level and allow only trusted IP addresses
 and networks to connect to Redis.

 Implement role-based access control to define user roles and permissions,
 restricting sensitive commands based on user roles.

 Keep Redis software up to date with the latest security patches and updates,
 following Redis documentation and release notes.

 Enable authentication for Redis instances to safeguard against unauthorized
 access.

16

Limitations
 Redis clustering only supports db0, compared to the default Redis instance,
 which supports db0 to db15, providing 16 databases in total.

 Redis Cluster does not support Pub/Sub due to potential issues with hashing
 patterns. It's not recommended to use Pub/Sub commands on cluster instances.

 Multi-key operations are restricted in Redis Cluster.

Use Cases
E-commerce Application
One use case involves an e-commerce client with a large
product catalog featuring multiple SKUs and product
add-ons. E-commerce tra�c is often driven by events,
marketing campaigns, and product launches, leading to
fluctuating demand. The client can scale the service by
adding more nodes to handle increased tra�c. If the web
server uses load balancing, it funnels parallel requests to
caching, databases, or external APIs.

Typically, web servers and databases respond within 1 to
100 milliseconds, while in-memory caching provides
response times as fast as 1 to 100 nanoseconds. During
high-tra�c conditions, when multiple users access various
products simultaneously, requests are queued, and caching
helps reduce the load on databases. With a caching system
backed by clustering, data reads are distributed across
multiple nodes, utilizing di�erent CPU cores and data
storage, instead of relying on a single instance.

After implementing Redis Cluster, the client's system was
upgraded to handle more tra�c during peak demand,
redefining application scalability.

17

Key Takeaways
Redis Cluster provides high availability and horizontal scalability to accommodate
growing data and tra�c. By implementing Redis Cluster for caching, frequently
accessed data is stored in-memory and distributed, reducing database load and
improving response times. Additionally, Redis manages replication and high
availability, making it an ideal solution for modern IT applications.

Conclusion
Redis Cluster o�ers a robust solution for scalable and resilient caching. By
distributing data across multiple nodes, it enhances performance and ensures high
availability. For optimal results, it is essential to follow best practices and
implement strong security measures. Enabling Redis Cluster can significantly boost
application performance and reliability.

References
 Redis Documentation: redis.io/documentation

 Redis Cluster Tutorial: redis.io/topics/cluster-tutorial

 Redis GitHub Repository: github.com/redis/redis

This whitepaper will help as guide for Analysing and implementation of the Redis
cluster for scalable caching solutions, providing detailed steps and best practices
to ensure a successful deployment.

18

About Altimetrik
Altimetrik is a pure play digital business company focused on delivering business outcomes with an

agile, product-oriented approach. Our digital business methodology provides a blueprint to

develop, scale, and launch new products to market faster. Our team of 5,000+ employees with

software, data, cloud engineering skills help create a culture of innovation and agility that optimizes

team performance, modernizes technology, and builds new business models. As a strategic partner

and catalyst, Altimetrik quickly delivers results without disruption to the business.

Our unique Digital Business Methodology centers on business led ownership aligned to company

goals. It is comprised of three pillars: experienced team of practitioners, an incremental approach,

and an end-to-end self-service digital business platform. These combine to facilitate collaboration

and agility between business and engineering teams to co-create products and solutions faster

without disruption to the business. This is powered by a single source of truth and a culture of

innovation that brings unlimited growth within reach.

We cater to companies of all sizes from Fortune 100 to digital disruptors and start-ups. We are a

people-centric organization and talent is one of the central pillars of our business model and

success. Employee engagement, diversity & inclusion, well-being and empowerment are central

themes to our ethos. This project has been instrumental in taking our digital culture to the next level

and brings our globally spread employee base on a unified platform.

www.altimetrik.com

