
Rudra Thakur, Sr. Principal Architect
Kartik Pattar, Sta� Engineer

Author/Architect

White Paper

Transforming
Regression
Testing
Through AI
and Machine
Learning

Introduction

The Challenge of Scale
in Regression Testing

Available solutions

Altimetrik’ s Approach to
Regression Test Optimization

White Box Approach

Architecture

Workflow Explained

Black Box Approach

Benefits

References

01

02

03

05

06

06

07

08

15

15

Index

Regression testing forms the backbone of quality assurance in software
development, encompassing a diverse range of tests accumulated over the
lifecycle of a product. As software evolves, so does the challenge of maintaining an
e�ective and e�cient regression test suite. The advent of agile methodologies and
continuous delivery models further compounds the complexity, necessitating a
sophisticated approach to managing and executing these tests.

Introduction

01

The sheer volume of regression test cases, often reaching into
the thousands, poses a significant challenge for quality
assurance teams. Products in domains such as insurance and
banking, where product lifecycles extend over years
and incremental releases are frequent, experience an
ever-growing regression test suite.

In such environments, test optimization i.e. identifying which
tests to run based on code churn in the product and test
prioritization are leveraged. Techniques like risk-based testing
provide initial frameworks for test prioritization. However,
these methods tend to depend excessively on the judgment of
subject matter experts, which may inadvertently neglect vital
scenarios that resonate with the end user's perspective.
Despite their utility, traditional methods may not fully cater to
the complex demands of current software development
practices.

02

The Challenge
of Scale in
Regression Testing

To tackle this issue, we can utilize risk-based prioritization and regular reviews of
the regression suite. The primary focus is at Test to code mapping to understand
the impact.

03

Available solutions

Approach 1: Uses JaCoCo for the execution tracker in which they have a wrapper
class which will do the profiling and tracking of the execution. The JaCoCo gives
the code coverage with respect to automation test cases. This process involves
deploying the agents which will track the execution of the code and the test cases
being tested, thereby making the T2C mapping.

Approach 2: It o�ers features such as code profiling and test-to-code mapping
Test-to-code mapping is a crucial feature of tool that connects specific tests to the
code they cover. This enables more targeted testing and ensures that all relevant
parts of the code are tested adequately.

Both the approaches come with some limitations.

Let's understand this through an example:

Imagine a Software product company, that has developed a comprehensive
platform for managing insurance policies, claims, and customer interactions. Over
time, the platform has grown in complexity, resulting in an ever-increasing
regression test suite.

2016

2017

2020

2022

2024 (H1)

1.0

2.0

3.5

5.0

8.0

10

30

50

70

40

100

500

2000

5000

7000

4

4

6

6

8

1.4

7

28

70

112

Approaches taken by other market tools

Year Version New
Features

Regression
Tests

Releases
per Year

Regression
Cycle Time

(Days)

Regression Test Suite Growth

Complex logic for agents: With 7000 regression tests and a regression cycle
 time of 112 days, the added overhead from instrumentation can slow down test
 execution further, increasing resource consumption and extending release
 cycles so as the di�culty in maintaining precise impact analysis

Cost: Incurs high costs over years, which can be prohibitive for organizations
 with large and frequently updated test suites.

Drawbacks of above approaches

 Initial release with 100 regression tests was manageable

 By Version 2.0, the suite grew to 500 regression tests

 At Version 3.5, it expanded to 2000 regression tests

 By Version 5.0, the suite had 5000 regression tests

 For Version 8.0, it reached 7000 regression tests, requiring substantial time and
 resources for each release.

04

To address the above challenges which is common for our enterprise customers,
Altimetrik used two distinct methodologies aimed at refining regression testing
processes. Our approach is to combine White Box (Code to Test) & Blackbox (User
stories to Tests) by building an agent with less configuration and independent of
code coverage tool usage along with leveraging historical test execution data and
advanced (GenAI + AI) models, to predict, optimize, and prioritize test cases for
the current release, enhancing e�ciency without compromising on coverage.

Altimetrik’ s Approach
to Regression
Test Optimization

This approach establishes a comprehensive mapping between the regression tests
and the application currently in development. Utilizing this mapping, it pinpoints
Testing Gaps and identifies risks associated with untested code changes. Moreover,
in instances of code churn within the product, our analytical engine evaluates the
alterations and recommends an optimized set of tests. This strategic selection aims
to maximize the e�ciency of defect detection within constrained timelines.

White Box

05

This perspective treats the software product as an opaque entity, focusing on
requirements and their corresponding test cases. By leveraging historical data and
advanced GenAI and AI models, we predict, optimize, and prioritize test cases for
the current release, enhancing e�ciency without compromising on coverage.

Let’s discuss them in detail

Black Box

The White Box approach creates a detailed correlation between the regression
tests and the ongoing application development. Through this correlation, it
precisely identifies Testing Gaps, highlighting the risks linked to changes in the
code that have not undergone testing.

White Box Approach

Architecture

06

The initial step involves configuring the Application Under
Development (AUD) to facilitate source code analysis. An
algorithm is employed to extract detailed code information,
including modules, applications, methods, classes, lines of code,
and block counts. This extracted data is then relayed to the
engine through a data dump API, laying the groundwork for
subsequent analysis.

Step 1: Source Code Analysis

The ATF is tasked with testing the AUD. Within this framework,
listeners are implemented to tag each test with custom
headers—such as test ID, suite ID, status, and test name. This
information is captured by the ATF listeners and transmitted to
engine Middleware for processing and insight extraction.

Step 2: Integration with
Automation Test Framework (ATF)

Engine Middleware acts as an intermediary, capturing requests
and pinpointing the methods in the application under
development that correspond to actions initiated by the ATF. This
Middleware amalgamates the test case information headers with
the identified methods, forwarding the compiled data to the
Engine for analysis and interpretation.

Step 3: Processing
by Engine Middleware

In the final stage, the Engine leverages the collected Test Case
Information headers and the processed data from the Middleware
to generate a Test to Code Mapping. This crucial mapping forges
a link between individual test cases and their respective code
segments within the AUD.

Step 4: Engine's Test to
Code Mapping

Workflow Explained

07

The outcome is an enhanced framework
that improves traceability, facilitates
impactful analysis, and ensures a
comprehensive assessment of test coverage.

The Black Box Approach treats the software product as a closed system, focused
on matching requirements to their respective test cases. Utilizing historical data
along with sophisticated Generative AI and AI models, this method forecasts,
refines, and orders test cases for the imminent release. The foundational premise
of this approach is traceability, implying that requirements are systematically
linked to the test cases developed for them.

^Traceability between Requirements and Testcases

Black Box Approach

08

Designed to tackle the challenge of absence of traceability, the Engine leverages
the White Box methodology to construct a traceability framework from scratch.
This newly established traceability then supports the Black Box approach, enabling
e�ective prediction, optimization, and prioritization of test cases. Through this
symbiotic application of both methodologies, the Engine ensures that products,
irrespective of their initial state of traceability, can achieve comprehensive testing
coverage.

With this traceability in place, additional parameters like Release, Build and Defect
will also be tagged as metadata and will be collected and catalogued by Engine
for analysis.

Taking Product Release R1 as an illustrative example, the complete suite of test
cases, denoted as T1, is subjected to a series of intermediate builds. The execution
outcomes, whether successful or not, are diligently documented. This process
generates a robust dataset capturing all stories within R1, along with the execution
results of their corresponding test cases—forming a structured and traceable map.

The "Story Details" table meticulously records every story, enriched with metadata
pertinent to Release R1. This is mirrored in the "Test Case Details" table, which
archives exhaustive details of the test cases, ensuring a traceable link back to the
respective stories.

^Additional Metadata of Build information,
 Test Set, Execution Result, and Defect Details

09

Consistent documentation is maintained for test sets across
multiple builds (B1, B2, B3, etc.), within the scope of R1. This
systematic approach is replicated for each subsequent product
release, culminating in a historical archive that intertwines stories,
test cases, and their outcomes along with defects across the
product's lifecycle.

The large data repository becomes the keystone for the Model
Engine, which initially harnesses this historical insight for training
and continuously evolves with the infusion of data from each new
release. In turn, this dynamic and ever-updating model feeds into
the Gen AI Engine, which is Ready to use the historical dataset to
predict the test cases required for impending releases, thereby
optimizing future testing endeavours.

The architecture of Engine, tailored for the black box approach,
delineates a flexible system compatible with a variety of test
management and Agile tools.

At its core, Engine interfaces with a test cases repository—Zephyr
being the primary example. However, Engine’s design allows for
seamless integration with any test management tool that provides
REST API support, such as ALM, TestRail, or Xray.

Parallelly, Engine connects to a story repository to access the agile
artifacts. While JIRA is the current repository in use, the
architecture is agnostic to the choice of Agile tools, provided they
support RESTful interactions. This allows for adaptability with
other popular Agile tools.

10

The Engine is underscored by its robust training and data mapping protocols,
as below:

11

The engine's training regimen includes hundreds of story descriptions that have
been processed through dual-model analytics.

One model is dedicated to keyword extraction, streamlining the search for
relevant terms within the story text.

The other is tasked with generating embeddings, intricate numerical
representations that capture the essence of a story's narrative, linked to
specific epics.

Trained Data

Sample Embeddings
Output from the Framework

12

The aggregate of this training data forms a comprehensive dataset
encompassing story narratives, correlated keywords, generated embeddings, and
their associated epics.

Code

Integral to the system's functionality, mapped data comprises a constellation of
elements that add depth and context to the story descriptions. This data matrix
includes but is not limited to, identifiers such as release_id and Story_id, the Build
version, comprehensive story descriptors, and the associated testcase_id. These
multifaceted data points converge to form a multidimensional view of each story
and its journey through the development lifecycle.

Mapped Data

13

The Testcase Data subset is instrumental in cataloging the specifics of each test
case. This includes a unique testcase_id, an elaborate testcase_desc that outlines
the test's objectives, and the assigned priority level, which informs the test's
execution precedence.

Upon the API's delivery of a new story description, Engine’s integration with the
GenAI model come into action, extracting pivotal keywords.

Concurrently, the text-embedding-ada-002 model embarks on creating new
embeddings.

The synergy between these processes culminates in the calculation of cosine
similarity scores, contrasting the new embeddings with the pre-established ones
to determine the most relevant matches.

Testcase Data

14

Predicated on these similarity metrics, the model then anticipates the test cases
most likely to be impacted by the new story, streamlining the test selection process
with unprecedented precision.

In conclusion, the daunting expanse of regression test suites is navigable through
two distinct methodologies: the white box and black box approaches. By
capitalizing on the wealth of historical test execution data and aligning it with the
current state of the application under development, we forge a path toward
streamlined test management. This data, when synthesized through Generative AI
models, empowers us to forecast with greater accuracy, crafting a targeted and
e�cient regression testing strategy for future releases. Such predictive capabilities
grant programs and test managers the acumen to judiciously distribute time
and resources.

The result is not only a product of superior quality but also a significant reduction
in infrastructure expenses by negating the need for repetitive, comprehensive
regression tests.

15

These are the benefits from the overall approach:

Benefits

Jackie Wiles, "Beyond ChatGPT: The Future of Generative AI for Enterprises,"
Gartner, January 26, 2023. GARTNER is a registered trademark and service mark of
Gartner, Inc. and/or its a�liates in the U.S. and internationally and is used here with
permission. All rights reserved.

References

Accelerates cycle duration: By reducing the time taken for each cycle, teams can
 achieve faster turnaround times, allowing for more iterations and quicker
 product development

Elevates overall quality: Improved quality leads to enhanced customer
 satisfaction, reduced rework, and a stronger brand reputation, ultimately
 resulting in higher customer retention and loyalty

Expands test coverage: With broader test coverage, teams can identify and
 address more potential issues, resulting in a more robust and reliable product
 that meets user expectations and requirements

Drives cost-e�ectiveness: By optimizing resources and minimizing ine�ciencies,
 organizations can achieve significant cost savings in development and
 maintenance, ultimately improving the bottom line

Empowers scalability: Scalability enables organizations to easily adapt to
 changes in demand or growth, ensuring that the tool can accommodate
 increasing workload or user base without compromising performance or
 stability

About Altimetrik
Altimetrik is a pure-play data and digital engineering solutions company focused on delivering

business outcomes with an agile, product-oriented approach. Our digital business methodology

provides a blueprint to develop, scale, and launch new products to market faster. Our team of

5,000+ employees with software, data, cloud engineering skills help create a culture of innovation

and agility that optimizes team performance, modernizes technology, and builds new business

models. As a strategic partner and catalyst, Altimetrik quickly delivers results without disruption to

the business.

Our unique Digital Business Methodology centers on business led ownership aligned to company

goals. It is comprised of three pillars: experienced team of practitioners, an incremental approach,

and an end-to-end self-service digital business platform. These combine to facilitate collaboration

and agility between business and engineering teams to co-create products and solutions faster

without disruption to the business. This is powered by a single source of truth and a culture of

innovation that brings unlimited growth within reach.

We cater to companies of all sizes from Fortune 100 to digital disruptors and start-ups. We are a

people-centric organization and talent is one of the central pillars of our business model and

success. Employee engagement, diversity & inclusion, well-being and empowerment are central

themes to our ethos. This project has been instrumental in taking our digital culture to the next level

and brings our globally spread employee base on a unified platform.

www.altimetrik.com

